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In this paper the evolution of a free liquid filament of arbitrary viscosity, contracting 
under the action of surface tension forces, is studied by numerical means. A finite- 
element discretization procedure is used to obtain approximate solutions to the 
Navier-Stokes equations. A Lagrangian approach is employed to deal with the large 
domain deformations which occur during the evolution of the filament. Typically we 
find that during the contraction a bulbous region forms at the end of the filament. 
The character of the evolution of the filament is found to be crucially dependent on 
the value of the Ohnesorge number Oh (a measure of viscous and surface tension 
forces). For large Ohnesorge numbers (Oh 2 O(1)) it is found that the liquid filament 
remains stable during contraction, even when the initial length of the filament is much 
longer than the Rayleigh stability limit. The bulbous end becomes more localized with 
decreasing Ohnesorge number while at the same time a clear neck forms in front of 
the bulbous end. In addition we find that the region in which the pressure is minimum 
moves towards the neck. For sufficiently small Ohnesorge numbers (Oh d O(O.01)) 
the filament becomes unstable with the radius of the neck decreasing and, eventually, 
the bulbous end breaking away from the filament. 

1. Introduction 
In a wide range of fluid dynamical processes long thread-like bodies of fluid may 

be formed. Unless constrained in some way, these threads of liquid (liquid filaments) 
will contract under the action of surface tension forces. The physical reason for the 
contraction is simply that surface tension forces try to minimize the surface energy 
by creating a spherical body of fluid. A simple contraction to a spherical domain 
does, however, not always occur. There is ample experimental evidence which shows 
that the filament may break up into separate parts during the contraction. Even in 
the case where the filament contracts without breakup occurring, the contraction is 
a complicated hydrodynamical process. It is the aim of this paper to increase our 
understanding of the contraction dynamics of liquid filaments with arbitrary viscosity. 

In a discussion of previous experimental and theoretical work on the dynamics 
of liquid filaments, it is helpful to divide this work into two groups. The first group 
contains papers on what we will refer to as ‘free filaments’. Free filaments evolve 
in a medium which has a neglegible viscosity compared with that of the fluid in 
the filament, and the outer medium is assumed to have no significant effect on the 
evolution of the filaments. Papers in the second group deal with filaments which are 
embedded in a fluid matrix which has a similar viscosity to that of the fluid in the 
filament. The evolution of such embedded filaments is significantly affected by the 
presence of the fluid matrix. 

Let us first consider the dynamics of free filaments which often occur when a 
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capillary surface breaks up in air. Such filaments occur, for example, in finite-length 
liquid jets (Goedde & Yuen 1970), bifurcating pendant drops (Hauser et al. 1936; 
Peregrin, Shoker & Symon 1990) and colliding drops (Jiang, Umemura & Law 1992). 
The experiments on liquid jets and bifurcating pendant drops show clearly the effect 
of viscosity on the contraction of the filament. Filaments consisting of high-viscosity 
fluids assume a characteristic dumb-bell shape during the contraction. The high- 
viscosity filaments contract fully to a spherical drop without breakup occurring. On 
the other hand, the contraction of a low-viscosity filament typically leads to large 
undulations on the filament. These undulations may be so large that the filament 
breaks up into separate drops before it has contracted fully. We point out that these 
undulations are not the result of the classical Rayleigh instability, but are capillary 
waves generated by the contraction of the end of the filament. 

Attempts to model the evolution of free filaments are largely restricted to the 
limit of zero viscosity. In this limit the complexity of the governing equations reduces 
significantly owing to the fact that one has to solve Laplace’s equation for the velocity 
potential rather than the full Navier-Stokes equations. Using a simplified model in 
which the end of a filament is assumed to consist of a blob of fluid connected to an 
inviscid thread, Keller (1983), and more recently, Ting & Keller (1990) and Keller, 
King & Ting (1995) predict that a thread of liquid with a uniform radius contracts 
with a uniform velocity. It is important to point out that this result assumes that a 
state of steady contraction exists, at least for some time during the contraction. It is, 
however, not certain that this is the case. In fact, the computations carried out in the 
present paper show that in the inviscid limit there is no state of steady contraction: 
the blob of fluid breaks away from the filament almost as soon as it has developed. 
Furthermore, as was pointed out earlier, large undulations occur on the surface of 
a contracting low-viscosity filament. The assumption that the filament consists of a 
bulbous end which is connected to a thread of fixed or monotonically increasing 
radius, is a rather severe approximation. Mansour & Lundgren (1990) have computed 
the contraction of short, inviscid filaments which result when a liquid jet breaks up. 
Their calculations clearly show the large undulations on the contracting filament. No 
breakup of the filament into separate drops is, however, observed, which might be 
because it was too short. In a recent numerical study of the bifurcation dynamics of 
a pendant drop, Schulkes (1994b) showed that a contracting filament-like body of 
inviscid fluid may in fact break up. 

Taylor (1934) was one of the first to study the evolution of viscous drops embedded 
in another fluid. In recent years, the evolution of embedded liquid filaments has been 
studied extensively both experimentally and theoretically, see for example Stone, 
Bentley & Leal (1986) and Stone & Leal (1989) and the review paper by Stone 
(1994). Like in the case of free filaments, one of the interesting questions related to 
the evolution of the embedded liquid filament concerns the stability of the filament 
during the contraction. A liquid filament with a length longer than the Rayleigh 
stability limit (i.e. longer than the circumference of the filament) might break up into 
individual droplets. However, the time scale on which the filament contracts may be 
much smaller than the time scale on which the Rayleigh breakup occurs. While this 
would prevent the filament from breaking up due to the Rayleigh instability, there 
may be other mechanisms which lead to drop formation in the contracting filament. 
A particularly interesting observation in this respect emerged from the experimental 
study of Stone et al. (1986). They found that a liquid drop embedded in a fluid 
matrix could be extended significantly beyond the Rayleigh stability limit without 
breakup occurring due to the Rayleigh instability. Instead, it was found that during 
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the contraction of the extended drop, bulbous ends would develop. If a bifurcation 
occurred, this bifurcation would almost without exception occur first at the bulbous 
end of the drop. This process was called ‘end-pinching’. It is interesting that end- 
pinching is not restricted to high-viscosity, embedded liquid filaments. Inviscid, free 
filaments also exhibit end-pinching as shown by Schulkes (1994b). 

In this paper we study the evolution of a free liquid filament of arbitrary viscosity. 
Experimental evidence suggests that viscosity is extremely important in relation to the 
evolution of the liquid filament. However, the desire to study the effects of viscosity 
prevents us from making any of the simplifying assumptions which significantly 
reduce the complexity of the problem both in the creeping flow (Stokes flow) limit 
and in the inviscid limit, namely that the governing equations can be reduced to 
integral equations defined only on the free boundary. In the intermediate-viscosity 
case this simplification is not possible and one is forced to work with the full nonlinear 
Navier-Stokes equations on a domain which deforms significantly in time. 

Numerical techniques which have been developed to deal with hydrodynamic free- 
boundary problems fall in one of three catagories: Eulerian methods, Lagrangian 
methods and mixed Eulerian-Lagrangian methods. In the case of the Eulerian meth- 
ods the computation is carried out on a fixed grid with the free boundary moving 
through the grid. One of the main difficulties associated with this method concerns 
the tracking of the moving boundary through the fixed grid, see e.g. Hirt & Nichols 
(1981). In the Lagrangian calculations nodal points are fixed to fluid particles and 
as a consequence the grid deforms during the computation. The Lagrangian methods 
in conjunction with finite-element techniques are very well suited to deal with free 
boundary problems for two reasons: the grid moves with the free boundary and 
the highly irregular domain which results is usually more conveniently treated with 
finite elements than with other discretization techniques. However, spatial variations 
in the convective velocity can lead to strong distortions of elements, often resulting 
in a breakdown of the calculations after some time, see for example Ramaswamy, 
Kawahara & Nakayama (1986). In order to try to combine the benefits of both 
the Eulerian and the Lagrangian approaches, arbitrary Lagrangian-Eulerian (ALE) 
techniques have been developed. ALE-based methods attempt to minimize the con- 
vective velocities thus preventing as much as possible the large element distortions in 
the Lagrangian approach while retaining the Lagrangian description of the moving 
free boundary. A clear exposition of the power of the ALE approach is given by 
Heurta & Liu (1988). In cases where the domain deforms in a global, more or less 
uniform manner, ALE-based methods have proved to be powerful. However, when 
large domain deformations occur on small length scales and at a position which is 
not known a priori, ALE-based methods lose much of their advantages over purely 
Lagrangian methods. Domain deformations can also be dealt with by means of a 
time-dependent map from the changing physical domain to a (fixed) computational 
domain. This approach has been applied successfully by Chen & Tsamopoulos (1993) 
to study nonlinear oscillations of liquid bridges. It is, however, likely to suffer from the 
same drawbacks as the Lagrangian approach: large local variations in the convective 
velocity will severely distort the physical domain so that regularity of the Jacobian of 
the transformations is not guaranteed. 

In this paper we have opted for a finite-element discretization procedure in connec- 
tion with an ALE-like approach to update to position of the nodal points in the mesh. 
Hence, the bounding surface of the mesh moves with the free (capillary) boundary. 
Details of the numerical approach are outlined in 93. Results of calculations are 
presented and discussed in #4 and 95 respectively. 
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2. Governing equations 
It will be evident that when a liquid filament is formed in practice, the fluid 

inside the filament will not be stationary owing to the dynamics associated with the 
formation process. However, in order to gain some insight into the evolution of the 
liquid filament we make the important simplifying assumptions that at some time 
instant t = 0 the liquid filament is at rest and that its shape is known. Furthermore, 
it will be assumed that the filament consists of a long, axisymmetric, cylindrical body 
with rounded ends. The dimensionless radius of the filament at t = 0 is taken to be 
equal to r = 1 while the total dimensionless length of the fluid domain is equal to 
2L0, cf. figure 1. For t > 0 the filament can contract freely under the action of surface 
tension forces. It follows that the axisymmetric fluid domain, denoted by Q(t),  and 
the bounding free surface denoted by S(  t )  are time-dependent quantities. 

Throughout this paper it will be assumed that the fluid under consideration is 
Newtonian and incompressible. In dimensionless form the governing equations are 
therefore the well-known Navier-Stokes equation 

(1) 
au 
at 
- + (u * V)u + Vp = OhV2u in Q ( t ) ,  

together with the incompressibility constraint 

V . u  = 0 in O(t) .  

In the above equations u(r,z , t )  = (u,,uz) denotes the dimensionless velocity field and 
p(r,  z, t )  denotes the dimensionless pressure. The Laplace, gradient and divergence 
operators in (1) and (2) assume their respective forms in cylindrical polar coordinates. 
In order to obtain the dimensionless equations, the radius R of the cylindrical initial 
fluid domain was taken as a characteristic length scale, with y / R  denoting a pressure 
scale and T = ( P R ~ / ~ ) ' / ~  a time scale (y is the coefficient of surface tension and p is the 
fluid density). The only dimensionless group which appears is the Ohnesorge number, 
defined as Oh = ~ ( p / y R ) ' / ~  ( v  denotes the kinematic viscosity). The Ohnesorge 
number is indicative of the relative importance of viscous and surface tension forces. 
Note, however, that the Ohnesorge number appears at the place where normally the 
Reynolds number appears. This suggests that the Ohnesorge number may also be 
regarded as the inverse of a Reynolds number of the flow. To show that this is indeed 
correct we only need to note that the ratio of inertia and surface tension forces, that 
is pRU2/y,  is equal to unity when the velocity scale U is taken to be U = R / T .  
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The boundary conditions required to close the problem are as follows. On the 
symmetry axis r = 0 we have 

while on the symmetry plane z = 0 the conditions 
u, = 0, a,, = 0, ( 3 )  

uz = 0, o z r  = 0, (4) 
are prescribed. In ( 3 )  and (4) aij denotes the usual Cauchy stress tensor in which 
the viscosity coefficient is replaced by the Ohnesorge number. Incorporating the 
(constant) ambient pressure in the pressure p and assuming that the medium outside 
Q ( t )  is unable to resist fluid motion on S( t ) ,  it follows that the normal and tangential 
stresses on the capillary surface are given by 

a,, = 2X, oz = O  on S(t) .  ( 5 )  
In the above equations 2% denotes the total curvature of the surface S ( t ) ,  an = 

C;j=, oijninj and az = c;j=l aijnitj with ni, ti,i = 1,2 denoting components of the 
unit normal and unit tangential vectors respectively on S(t) .  The final condition to 
be prescribed on the capillary surface is the kinematic condition which specifies that 
the free surface is a material surface, thus 

D x  
- = u on S ( t ) ,  Dt 

with D / D t  denoting the usual convective derivative. 

3. Numerical implementation 
3.1. Spatial discretization 

In order to employ the finite-element method, the weak formulation of the problem 
specified by equations (1)-(5) is required. The weak (or variational) formulation is 
obtained in the usual way by multiplying (1) and (2) by sufficiently smooth test 
functions u and q, and using partial integration to reduce the order of differentiation. 
On using the boundary conditions (3), ( 5 )  we find after some algebra that the 
variational form of the momentum equation (1) reads 

I,,, [v * (g + (u * V)u + pV u rdrdz + Oha(u, u )  = > I  2Xu,rds, (7) 

in which 

The quantity Oha(u, u )  is a measure of the rate of dissipation of energy due to viscous 
forces in the fluid domain. The curvature term in the boundary integral in (7) contains 
second-order derivatives which may be removed in the following manner. The total 
curvature of the surface S( t )  can be written as 

at 1 
as R~ 

2 X n  = -- + -n, 
in which n, t denote unit normal and tangential vectors to S ( t )  and 

(9) 
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with the subscript s denoting a derivative along the arclength of the surface S ( t ) .  
Hence, using (9) and partial integration we find that the surface integral in (7) can 
be written as 

(11) 

The continuity equation (2) is treated in the following way. Rather than working 
with the continuity equation as it stands, this equation is perturbed by adding a small 
(penalty) term containing the pressure, via 

Ep + v * u = 0, 

1 a 
2 X v n r d s  = l,,, %v,,rds + t * %(vr)ds. 

L t  ) 

(12) 

pqrdrdz + qV * u rdrdz = 0. (13) 

or in variational form 

s,,,, L t  , 
The parameter E is small (we have taken e = lop9) so that the term ~p in the 
perturbed continuity equation effectively introduces some artificial compressibility. 
The reason for perturbing equation (2) is the following. Using the unperturbed 
continuity equation (2) leads after discretization to a system of equations which either 
has a large bandwidth or allows the possibility of zeros on the leading diagonal. The 
large bandwidth reduces the efficiency of any matrix solver, while the possibility of 
zeros on the leading diagonal requires the use of partial pivoting which is expensive 
numerically. These difficulties are overcome by using the perturbed continuity equation 
(12) (for details refer to Cuvelier, Segal & Van Steenhoven 1986) 

Using (7), (11) and (13) we find that the variational formulation of the momentum 
equation and the perturbed continuity equation as follows. 

Find u, p E Q(t)  such that for all sufficiently smooth functions v ,  q f Q(t)  the 
following equations are satisfied: 

pqrdrdz + qV u rdrdz = 0. 

(14) 
With the exception of the kinematic boundary condition (6 )  all boundary conditions 
are incorporated in (14). 

In order to construct a discrete system of equations the domain Q ( t )  is divided 
up into triangular elements. On each element the velocity u and the pressure p are 
approximated by a linear combination of the usual finite-element basis functions with 
compact support. The basis functions q$(r, z) for the velocity components are members 
of the family of extended quadratic polynomials (based on the three vertices, the three 
midpoints of the sides and the barycentre of the triangle). The basis functions yi(r,z) 
for the pressure are in the family of linear polynomial functions (based on one nodal 
point including two derivatives). Thus on each element we have the approximations 

L , t ,  

I 3 

fi(r, 2,  t )  = C ui(t)4i(r, z), p(r, z, t )  = C pi(t)vi(r, z), (15) 
i=l i= 1 

in which ui = (uri,uZi) and pi are values of the velocity and the pressure respectively 
at the nodal points. Substituting the above approximations of the velocity and the 
pressure on each triangular element into (14), using as test functions u = (4j, 4 j )  and 
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q = y j  and adding the contributions from all elements, we obtain the discrete systems 
of equations 

ah 
at 

M- + C(h)h - LT$ + OhAh = f ,  

€O$ = -Lh. 

In the above equations il and $ denote vectors which contain velocity and pressure 
unknowns respectively at the nodal points. The matrices M, C,  L, A and D are called 
the mass, convective, pressure, stiffness and pressure-mass matrices respectively and 
f is the force vector resulting from the surface integrals in (14). The pressure-mass 
matrix 0 is non-singular so that it may be inverted and hence the pressure can be 
expressed explicitly in terms of the velocity unknowns by means of the perturbed 
continuity equation. The system of equations which results after eliminating the 
pressure reads 

(17) 
ah 
at 

M- + C(il)P + sil = f ,  

in which 
T -1 S = O h A +  -L  D L. 

E 

Without going into details we point out that the matrix S can be assembled efficiently, 
that it retains the properties of the matrix A (symmetry and positive definiteness) and 
that its bandwidth does not differ significantly from that of the matrix A. All further 
specific details of the discretization procedure will be omitted since the method is 
well-established. Information concerning the application of the finite-element method 
to the Navier-Stokes equations, including the penalty function approach can be found 
in Cuvelier et al. (1986). 

3.2. Time integration 
Owing to the presence of the convective term C(il)h, the system of equations (17) 
is nonlinear in 2. Further nonlinearities arise from the curvature terms which are 
contained in the forcing vector f .  Clearly, solving the nonlinear system of equations 
exactly (to within numerical accuracy) at each time step would require an iterative 
solution technique. However, this is computationally expensive given the fact that 
each iteration would involve a deformation of the domain with associated computa- 
tional costs, Hence, in order to reduce the computational time we use the following 
commonly adopted approach. The convective term is linearized by using Picard lin- 
earization (successive substitution) and it is assumed that for a sufficiently small time 
step At the function values at the previous time step provide a good initial guess 
so that no iteration is required. Furthermore, given a", the domain at some time 
t" = nAt, we calculate the velocity field at t = tn+' on 52" and the domain defor- 
mation is calculated subsequently as outlined below. The system of equations (17) is 
integrated in time using the &method which, on applying the Picard linearization of 
the convective term, yields 

in which P = il(t") and iY+' = Oii"'' + (1 - 8)iln (0 < 8 =g 1). Note that the force 
vector f at the time level t" is used rather than at level tn+'. In our calculations we 
will always take 0 in the range 0.5 < 8 < 1 since the &method is unconditionally 
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stable in this interval, see e.g. Lambert (1991). Owing to the fact that f" is used rather 
than f n f e ,  the discretization error of (18) is of order At for all values of 0 E [0,1]. 

3.3. Domain deformations 
Suppose the velocity field 2" is calculated using (18) on the domain Q". The new 
free-surface position is then calculated in the following way. The position vector of the 
free boundary x; is known and the nodal points on the boundary are now updated 
by applying the kinematic condition (6). Using a simple first-order Euler scheme for 
the kinematic condition yields 

x;" = xl;. + At@'. (19) 

Once the deformation of the free boundary is known, a new mesh is calculated 
such that changes in the mesh reflect the topological changes of the free boundary. 
Rather than interpolating the function values between the old nodal points to obtain 
function values at the new nodal points, the function values at the new nodal points 
are just taken to be those at the old nodes. This approach may be justified as 
follows. Nodes move a distance of order UAt where U is a dimensionless velocity 
scale. Approximating function values at the new nodal positions by using those at 
old nodes introduces a spatial discretization error of order At. The overall accuracy 
of the numerical implementation is not reduced by this approximation since this 
spatial discretization error is of the same order as the discretization error in the time 
integration scheme (18). Note that when U >> 1 we have to reduce At in order to 
maintain accuracy. Numerical experiments show, however, that U - 1 in most cases 
we have considered. 

Numerical experiments were carried out where interpolation was used to calculate 
the solution at the new mesh. The relative difference between the solution obtained 
with and without interpolating was so small (typically < 1%) that the extra computa- 
tional cost of interpolating the solution was not warranted. Furthermore, interpolation 
has a diffusive effect on the solution. It can be shown that the amount of diffusion due 
to interpolation is of the order UhAt, in which h is a typical diameter of an element. 
In order for numerical diffusion to be negligible compared with physical diffusion we 
therefore require UhAt << Oh. While in all numerical experiments presented in the 
following sections this condition was satisfied, the extra constraint on the time step 
may be quite restrictive for small values of Oh when interpolation is used. 

The time integration scheme as given by (18) and (19) for the free-boundary problem 
under consideration does not require an iterative procedure at each time step: 8''' 
is calculated explicitly and the domain is updated subsequently. In order to test 
the accuracy of this approach, the following iterative scheme was also implemented. 
Given Q", the approximation h(') to hn+' was calculated using (18). Subsequently the 
domain was deformed using (19), new matrices and a new right-hand-side vector f are 
calculated and a new approximation ii(2) to is found. This process was repeated 
until the relative difference (in the 2-norm) between successive approximations of 
fin+' was less than 0.1%. It was found that generally only two steps in this iterative 
procedure were required in order to obtain the desired accuracy. These results justify 
our approach of assuming that the first approximation to fin+' is sufficiently accurate. 
As with the interpolation, the slightly increased accuracy obtained by applying the 
iterative procedure does not warrant the huge increase in the computational cost and 
hence the iterative procedure is not applied. 

As an example of the domain deformation we are capable of dealing with, figure 2 
shows the initial (a) ,  intermediate (b )  and the final (c) mesh resulting from a simulation 
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FIGURE 2. Examples of typical domain deformations and the corresponding evolution of the mesh. 
The meshes shown correspond to the initial (a), intermediate ( b )  and final (c )  stages of a computation 
with Lo = 15 and Oh = 1. 

in which Oh = 1 and the initial half-length LO = 15. Note that only one quarter of 
the domain is plotted owing to the axial symmetry and the symmetry about the plane 
z = 0. 

3.4. Numerical tests 
It is imperative to test our numerical implementation before we proceed with the 
liquid filament problem. We do this by considering a slightly extended drop which we 
allow to relax to its spherical shape. For sufficiently small values of the Ohnesorge 
number Oh the drop will oscillate and the amplitude of the oscillations decreases 
owing to the action of viscous forces. The high-frequency modes will be damped most 
strongly so that after some time we expect the drop to oscillate with the frequency 
of the fundamental mode with amplitudes decreasing exponentially with time. For 
sufficiently large values of Oh the viscous forces are dominant and we expect to 
observe an aperiodic damping process. In figure 3 we have plotted the position 
of the free-surface node situated on the symmetry axis as a function of time for 
the cases Oh = 0.05 and Oh = 1. The initial configuration of the drop was taken 
to be a cylindrical body of unit length with spherical caps of unit radius at each 
end of the cylinder. The domain was discretized using 306 elements. We note the 
oscillatory decay of the amplitude in the case Oh = 0.05 while for Oh = 1 the decay 
is clearly monotonic which is in agreement with our expectations. The equilibrium 
attained by the drop when oscillations have damped out provides a good test of mass 
conservation of the numerical code. We find that for Oh = 1 the equilibrium radius 
at t = 30 is equal to R = 1.35737 while the theoretical equilibrium radius is given 
by R = (5/2)'13 = 1.35725. In the present example the total mass change during 
the calculation is less than 0.01%. In all subsequent calculations we have chosen the 
number of elements in the finite-element mesh such that the total mass change during 
the calculation was less than 0.1%. From the positions and the amplitudes of the 
maxima in figure 3 we can readily determine the frequency of oscillations and the rate 
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FIGURE 3, The position of the free-surface node on the symmetry axis as a function of time for the 

Ohnesorge numbers as indicated in the plot. 

w 6 
1.712 0.127 
1.745 0.124 
1.763 0.123 
1.770 0.122 
1.773 0.122 
1.773 0.122 
1.774 0.123 

TABLE 1. The frequency w and damping coefficient 6 
as calculated from successive maxima in figure 3. 

of decay of the oscillations. In the case of Oh = 0.05, eight maxima are distinguishable 
in the time interval [0,30]. The frequencies o and rates of decay 6 as derived from 
positions and amplitudes at successive maxima in figure 3 are listed in table 1. We 
note that as time progresses (moving down the table), the frequencies increase. This 
is in qualitative agreement with analytical work by Tsamopoulos & Brown (1983), 
who showed that the frequency of oscillations increases with decreasing amplitudes 
of the oscillations. In the limit of infinitesimal oscillations the frequencies should 
tend asymptotically to the eigenfrequencies of a drop as obtained from linear theory. 
The frequencies of an oscillating viscous drop were calculated by Reid (1960) for 
arbitrary viscosity. In Appendix A it is shown that for small Ohnesorge numbers the 
dimensionless frequency (o) and damping coefficient ( 6 )  of a drop are approximated 
by o = 1.775 and 6 = 0.122. Clearly, these results agree well with those obtained 
from computations as presented in table 1. 

The effect of the artificial compressibility which was introduced to deal with the 
continuity equation (refer to (13)) was also investigated. It was found that for E < 
there was no discernible change in the test results mentioned in this section. Thus, 
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as we have done in our calculations, guarantees that effects of the taking E. = 
artificial compressibility are negligible. 

4. Results of computations 
Let us start our investigation into the contraction of liquid filaments by studying 

the dependence of the contraction on the Ohnesorge number Oh. In all cases we take 
the initial domain to consist of a cylinder with unit radius bounded by a spherical 
cap. The initial half-length of the filament is taken to be LO = 15 (aspect ratios 
of O(10) are not unusual for low-viscosity fluids while for high viscosity the aspect 
ratio may be up to one order of magnitude larger, see Zhang & Basaran, 1995). At 
t = 0 the filament is at rest and for t 7 0 it can contract freely under the action of 
surface tension forces. In all calculations we have taken 0 = 0.7 and At = 0.01 when 
Oh 2 0.1 while At = 0.005 when Oh < 0.1. Let us first consider the case in which 
Oh = 1. The domain deformation together with vector plots of the velocity field and 
contour plots of the pressure are shown in figures 4(a) and 4(b) respectively, at the 
times indicated in the plots. We observe that at t = 3 a bulbous end has formed 
with a radius somewhat larger than that of the initial filament. The vector field 
shows that the filament contracts without the occurrence of large velocity gradients. 
The pressure contours at t = 3 show that a pressure minimum is situated near the 
inflection point of the second derivative of the function f(z), where r = f(z) denotes 
the instantaneous free-surface shape. This is an important observation since the point 
of inflection corresponds to a minimum in the normal stress jump across the interface 
(cf. Stone et al. 1986, figure 14). We observe in figure 4 that the pressure field remains 
unchanged during the contraction until the bulbous end meets the symmetry plane. 
The pressure contours in figure 4(b) are typical for filaments with Ohnesorge number 
Oh 2 O(1). It follows that for large Ohnesorge numbers the pressure in the filament 
during contraction is mainly determined by the normal stress jump across the free 
surface. 

From figure 4 it is clear that end-pinching, the separation of the bulbous end from 
the filament, does not occur in the case with Oh = 1. In fact with Oh = 1 end-pinching 
was never observed in our numerical experiments (the evolution of filaments with 
initial lengths up to LO = 30 was studied). The Rayleigh instability was also not 
observed, even though the initial length of the filament was up to ten times the 
Rayleigh stability limit. Evidently, the time scale on which the Rayleigh instability 
will manifest itself was large compared with the time scale on which the filament 
contracts. We should point out that the absence of the Rayleigh instability may be 
an artifact of the initial conditions which we have assumed at t = 0, namely that the 
liquid filament was perfectly cylindrical and completely at rest. It follows that the 
only perturbations introduced are those associated with numerical round-off. While 
these perturbations should, eventually, lead to the growth of the Rayleigh instability, 
the time scales required to do so are (artificially) long. It will be clear that in any 
real-life situation large perturbations are likely to be present which may lead to the 
Rayleigh breakup before the filament has contracted. However, we are not aware of 
experimental evidence of Rayleigh breakup in a contracting free filament. 

Before we proceed to study the evolution of the filament for a different Ohnesorge 
number, let us compare our results so far with the experimental study by Stone et 
al. (1986). In this study the evolution of extended drops embedded in a fluid matrix 
was investigated. One of the important parameters is the viscosity ratio of the drop 
viscosity p and the matrix viscosity p / L .  In the limit L ---+ m the viscosity of the 



288 R. M .  S .  M .  Schulkes 

............... ............... ............ .............. 

t = 3  

r = 6  

(b) 

t = 3  

t = 6  

---\ 
t = 9  

t=12 

F’IGURE 4. The evolution of a liquid filament with Lo = 15 and Oh = 1. Vector plots of the velocity 
field (a) and contour plots of the pressure (b)  are shown at the times t = 3,6,9,12 as indicated. 
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fluid matrix is negligible compared with that of the drop. This is the limit which 
corresponds to our study of free liquid filaments when inertia effects of the outer 
fluid are discarded. In their experiments, Stone et d. found that for large values of 1 
(that is A - O(10)) a highly elongated drop (LO = 35) could contract without either 
end-pinching or the Rayleigh instability leading to breakup. Smaller values of 1 would 
typically give rise to end-pinching. It was also found that the drop would have to be 
elongated to up to ten times the Rayleigh stability limit in order for the Rayleigh 
instability to appear. These results are in broad agreement with our calculations with 
Oh 2 O( 1). Furthermore, the shape of the contracting filament in the experiment with 
1 - O( 10) is very similar to that observed in figure 4. The results suggest that viscous 
effects of the outer fluid do not change the qualitative features of the contracting 
embedded filament as compared with a contracting free filament when the Ohnesorge 
number is sufficiently large. 

Let us next consider the case in which Oh = 0.1 with LO = 15 as before. Vector 
plots of the velocity field and contour plots of the pressure are presented in figure 5. 
In this case it was possible to continue the time integration until the point at which 
the bulbous end of the filament reached the symmetry plane. At that point the axial 
momentum of the contacting filament is transferred in the radial direction, leading to 
a flattened drop with a rapidly increasing radius. The mesh adaptation routine which 
we have used is unable to cope with this large and rapid domain deformation and 
consequently the calculation had to be terminated at this point. When the evolution of 
the filament with Oh = 0.1 is compared with Oh = 1, we find a number of important 
qualitative differences. The most obvious difference is the increase in the radius and 
the more pronounced, rounded shape of the bulbous end. In addition we note that 
decreasing the Ohnesorge number has led to the formation of a clear neck and a 
small wave-like disturbance moving ahead of the neck. We observe, furthermore, that 
whereas in the case with Oh = 1 the velocity gradients were small, with Oh = 0.1 large 
velocity gradients occur. In the case with Oh = 1 all velocity vectors point in the same 
direction (all the fluid is pushed ahead of the contracting end) while with Oh = 0.1 
fluid from the neck is sucked into the bulbous end and at least two stagnation points 
are visible on the symmetry axis. 

When we turn our attention to the pressure contours in figure 5(b) we observe other 
significant differences as compared with figure 4(b). Clearly the pressure gradients 
are much larger with Oh = 0.1 and, significantly, the point of minimum pressure has 
shifted from the first point of inflection (as seen from the bulbous end of the filament) 
towards the neck. Thus, while with Oh = 1 the pressure distribution is determined by 
the normal stress jump across the free surface, when Oh = 0.1 the dynamics of the 
fluid motion affects the pressure distribution significantly. The shift of the pressure 
minimum can be explained as follows. Assuming that we can make the approximation 
6, = --p + 20hau,/dn (which is stricktly speaking valid only when V - n = 0), the 
normal stress condition as given by ( 5 )  becomes 

When we concentrate on the neck region in figure 5(a) we observe that on the bulbous 
side of the neck au,,/dn > 0 (the component of the velocity normal to the surface 
increases towards the surface) while &/an < 0 on the other side of the neck. This 
implies that dynamic effects increase the pressure near the point of inflection while 
the pressure is lowered towards the neck which is in accordance with observations. 
However, notwithstanding the large qualitative change in the character of the flow 
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t = 3  

FIGURE 5. The evolution of a liquid filament with LO = 15 and Oh = 0.1. Vector plots of the 
velocity field (a) and contour plots of the pressure (b)  are shown at the times t = 3,6,9,12 as 
indicated. 
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and pressure field which occurs when the Ohnesorge number is lowered from Oh = 1 
to Oh = 0.1, in neither case did end-pinching occur nor did the Rayleigh instability 
appear. 

Lowering the Ohnesorge number further to Oh = 0.01 leads to an interesting 
qualitative change in the evolution of the filament. In figure 6 we have plotted the 
velocity vector field and the pressure contours at the times indicated in the plots. We 
note that the neck, which first appeared with Oh = 0.1, has become more pronounced 
while a clear wave-like disturbance is generated ahead of the neck. The calculations 
of Mansour & Lundgren (1990) show that in the inviscid limit a similar wave-like 
disturbance is generated on the surface of a filament. When contour plots of the 
pressure are considered we observe that at t = 1 there are two pressure minima. 
The minima have merged at t = 2 and subsequently the pressure minumum becomes 
highly localized in the neck. Unfortunately we are unable to continue the numerical 
integration after t = 4.31 due to the large distortions of the mesh in the neck region. 
This distortion of the mesh is the result of the large curvature of the surface in the 
neck coupled with a large gradient in the velocity along the free surface (recall that 
the update of the mesh is based on changes which occur along the free boundary). 
A doubling of the number of elements in the mesh enabled us to continue the 
integration only until t = 4.39. The numerical problems which we experience are 
typical for (capillary) free-boundary problems in which large changes in the curvature 
may coincide with large velocity gradients over small length scales. Even in the case 
where the more flexible boundary-element technique is used, localized regions in which 
large changes in the curvature occur are often the source of numerical difficulties (see 
e.g. Schulkes 1994~) .  

When the results for Oh = 0.01 are compared with the previous results obtained with 
Oh = l , O . l  we observe the following trends. Lowering the Ohnesorge number leads to 
the formation of a more localized, rounded bulbous end of the contracting filament. A 
neck which forms in front of the contracting bulbous end becomes deeper and more 
localized when the Ohnesorge number is lowered. Furthermore, while the pressure for 
large Ohnesorge numbers is mainly determined by the normal stress jump across the 
free surface, for small Ohnesorge numbers the pressure is determined significantly by 
dynamic effects and as a consequence the pressure minumum moves towards the neck. 
It is interesting to point out that as the Ohnesorge number is lowered, the neck region 
appears to act increasingly as a Venturi tube: large flow speeds in the neck lower the 
pressure in the neck. The question now arises of whether the numerical difficulties 
experienced in the case of Oh = 0.01 are in any way related to the onset of end- 
pinching. Namely, as the radius of the neck decreases the normal stress jump across 
the free surface will increase in the neck. This fact, together with our observation 
that the pressure decreases in the neck owing to dynamic effects, ensures that the 
mechanisms for end-pinching to occur are in place. However, since we are unable to 
continue the calculation until the point at which the radius of the neck vanishes, we 
are not able to determine with certainty whether or not end-pinching occurs. 

5. Discussion 
5.1. End-pinching 

In the previous section it was shown that a decrease in the Ohnesorge number Oh 
leads to the formation of an increasingly localized and pronounced necking region. 
However, owing to numerical constraints brought about by the severe deformation of 
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t =  1 

FIGURE 6. The evolution of a liquid filament with LO = 15 and Oh = 0.01. Vector plots of the 
velocity field (a )  and contour plots of the pressure (b)  are shown at the times t = 1,2,3,4 as 
indicated. 
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FIGURE 7. A plot of the radius of the neck as a function of time for the parameters = 15 and 

Oh = 0.1, 0.01 and 0 (velocity potential calculation). 

the mesh in the necking region, we were unable to determine with certainty whether 
or not end-pinching will occur. All we are able to say is that for Oh 2 O(O.l) end- 
pinching will not occur. In order to shed more light on the question of end-pinching 
for free liquid filaments we have used a boundary-element code which was employed 
in earlier calculations (Schulkes 1994a) to investigate the contraction of an inviscid 
liquid filament. Results of one of these calculations in which Lo = 15 are presented 
in Appendix B. It is found that in the inviscid limit end-pinching will indeed occur. 
This result appears to confirm the trend which emerged from the calculations in 
the previous section (a lower Ohnesorge number leads to a more pronounced neck). 
However, the question now arises of whether or not there is a 'critical' Ohnesorge 
number Oh' such that end-pinching occurs for Oh < Oh' while no end-pinching 
occurs for Oh > Oh". In order to attempt to answer this question let us consider the 
radius of the neck as a function of time. In figure 7 the radius of the neck versus 
time is plotted for the Ohnesorge numbers Oh = 0.01,O.l and for the inviscid case. In 
the inviscid limit we observe that a neck starts to form after t = 0.75 after which the 
radius of the neck decreases with an inceasing rate. When the viscosity is finite we 
notice that the neck takes somewhat longer to appear than in the inviscid limit. In the 
case of Oh = 0.1 the neck begins to appear at t = 1 after which the radius of the neck 
decreases steadily. However, after t = 4 the radius of the neck appears to attain a 
more or less steady value at approximately 88% of the undisturbed radius. Decreasing 
the Ohnesorge number to Oh = 0.01 we see the same qualitative behaviour as with 
Oh = 0.1 with the difference that the 'steady' radius of the neck has formed earlier 
and has reduced to 85% of the undisturbed radius. These results appear to indicate 
that end-pinching will not occur when Oh = 0.01 and that the breakdown of the 
calculations is purely numerical in origin. When the Ohnesorge number is lowered to 
Oh = 5 x it is found that the radius of the neck closely follows the inviscid curve 
in figure 7. Until t = 2.67 (being the point at which the calculation breaks down due 
to mesh deformations) there is no sign that the rate at which the neck contracts slows 
down. This may indicate that end-pinching occurs. 



294 R. M. S. M. Schulkes 

v (m’s-’) p (kgm-3) y (Nm-’) 
Water 1.0 x 1.0 x lo3 7.2 x lo-* 
Benzene 0.6 x lop6 0.88 x lo3 2.9 x lo-’ 
Glycerol 1.0 x lop3 1.3 x lo3 6.3 x lo-’ 

TABLE 2. Physical constants for water, benzene and glycerol. 

The foregoing suggests that the critical Ohnesorge number lies in the range 5 x 
lop3 < Oh* < It is difficult to be more precise about the value of Oh since 
a slow-down in the contraction rate of the neck is not a guarantee that the neck 
will not continue to contract. A clear sign of a steady neck radius (as in the case 
with Oh = 0.01) is not always obtained. It is interesting to look at experimental 
evidence which may support our belief that there is a critical Ohnesorge number 
below which end-pinching occurs. Hauser et al. (1936) investigated the evolution of 
pendant drops consisting of water, benzene and glycerol. In these experiments it was 
found that the radius of the filament formed when a drop breaks away from its 
point of attachment is almost independent of the value of the viscousity. Typically, 
the radius was found to be 0.25 mm. The recent experiments using water drops by 
Peregrine et al. (1990) yield a very similar value for the radius of the filament. The 
corresponding Ohnesorge numbers for water, benzene and glycerol (cf. table 2) are 
Oh = 7.4 x and Oh = 8.9 respectively. Note that the range in 
which we believe the critical Ohnesorge number to lie is of the same order as typical 
Ohnesorge numbers for low-viscosity filaments. In the experimental results of Hauser 
et al. (1936) the glycerol filament does not break up. This is as expected since the 
corresponding Ohnesorge number is three orders of magnitude larger than the region 
in which we believe the critical Ohnesorge number to lie. The water filament does 
not show breakup in either of the experiments by Hauser et al. (1936) or Peregrine 
et al. (1990). Interestingly, the benzene filament does break up into separate drops. 
Hence, if the breakup can be attributed to the mechanism described in the previous 
section the experimental evidence puts the critical Ohnesorge number in the range 
6.6 x < Oh* < 7.4 x which is within the bounds we obtained from our 
computations. Some caution is however required in accepting the narrow bounds 
for the critical Ohnesorge number as obtained from the experiments. There is simply 
insufficient experimental evidence to guarantee that the narrow bounds are not merely 
fortuitous. 

Further care is required in attributing filament breakup as observed in the ex- 
periments by Hauser et al. (1936) to the Ohnesorge-number-dependent breakup 
mechanism which we have observed in our numerical work. While the estimate of 
the critical Ohnesorge number as obtained from the numerical computations agrees 
well with that obtained from the experiments, there may be other factors which may 
affect whether or not breakup occurs in experiments. The first effect which influences 
breakup is the initial aspect ratio of the filament. Our calculations have shown that 
for low-viscosity filaments, breakup will occur provided the filament is sufficiently 
long. If the filament is too short it will have contracted before axial undulations 
have grown so much that breakup occurs. From the numerical results we find that 
necking occurs after approximately 5 time units. One end of the filament contracts a 
distance of approximately 4 radii in this time span. Therefore, in order to prevent a 
full contraction before breakup a filament with an initial aspect ratio 2 8 is required. 

Oh = 6.6 x 
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The photographs by Hauser et al. (1936) show only one instant in the evolution so 
that it is not possible to determine the initial length of the filaments from these pho- 
tos. However, recent experiments by Zhang & Basaran (1995) show that a filament, 
formed when a drop of low-viscosity fluid breaks away from its point of attachment, 
has an aspect ratio 2 10. This suggests that there is sufficient time for end-pinching 
to occur. 

A second effect which may influence the breakup of the filament is the initial fluid 
motion inside the filament when it is formed. The situation we have assumed (no 
motion at t = 0) is highly idealized. For high-viscosity filaments the initial conditions 
are unlikely to be important since the time scale on which the filament contracts 
is large compared with the typical time scale on which short-wavelength initial 
disturbances will attenuate. For low-viscosity fluids this situation is different since 
disturbances associated with the formation of the filament may not have disappeared 
on the time scale on which end-pinching occurs. These disturbances may, in particular, 
lead to Rayleigh breakup before end-pinching occurs. The work of Lafrance (1975) 
shows that Rayleigh breakup is, in fact, unlikely to be able to compete with the end- 
pinching process. Namely, Lafrance showed that with an initial disturbance amplitude 
equal to 20% of the radius of an undisturbed (inviscid) jet, the dimensionless breakup 
time was of the order of 10 time units (decreasing the disturbance amplitude leads 
to a rapidly increasing breakup time). Recall that the breakup time due to the end- 
pinching process is approximately equal to 5 time units. This suggests that unless 
a large-amplitude disturbance is created with the correct wavelength, the Rayleigh 
breakup will be slower than the end-pinching process. 

Transients associated with the formation of the filament may still influence end- 
pinching. In particular, transients with a wavelength approximately equal to that 
generated by the end-pinching process may be important. From figure 6 we note that 
the wavelength of the disturbance generated by the contracting end of the filament is 
approximately 3 radii long. From Bauer (1984) we obtain that the damping coefficient 
for a disturbance with a wavelength equal to 3 radii is approximated by 6 = K x Oh 
where K = 50. For shorter wavelengths K increases rapidly (halving the wavelength 
increases K by a factor of 3). For Ohnesorge numbers in the range of the critical value 
we find a damping coefficient of 6 w 0.3. Hence, in the 5 times units which are required 
for end-pinching to occur, the amplitude of disturbances with a wavelength equal to 
approximately 3 radii will have been reduced by at least 80%. These results indicate 
that even the transients with a wavelength most likely to affect the end-pinching 
process are unlikely to be of major importance. 

5.2. Rate of contraction 
From the results presented in the previous sections, it is clear that the Ohnesorge 
number has a major effect on the evolution of the filament. In order to investigate how 
the Ohnesorge number affects the rate of contraction of the filament we have plotted 
the curves of log(1- L(t) /Lo)  versus log(t) in figures 8(a) and 8(b) for the Ohnesorge 
numbers Oh = 1 , O . l  respectively. The different curves correspond to different values 
of Lo as indicated in the plots. The dashed lines in figure 8 have a gradient equal to 2 
while the gradient of the dot-dashed line in figure 8(b) is equal to 1. Let us consider 
figure 8(a). We observe that the curves have a slope which is approximately equal 
to 2 until the equilibrium configuration is reached. Hence, for Oh = 1 the end of 
the filament accelerates with an almost constant value, virtually until the equilibrium 
drop shape is attained. 

When we consider figure 8(b) we observe that lowering the Ohnesorge number to 
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RGURE 8. A plot of log(1 -L(t)/&) versus log(t) for the capillary numbers Oh = 1 (a) and Oh = 0.1 
(b). The different curves in each plot correspond to the initial lengths LO = l0,15,30 as indicated. 
The dashed lines in both figures have a gradient equal to 2 while the dot-dashed line in (b)  has a 
gradient equal to 1. 

log(t) 

Oh = 0.1 leads to an interesting change in the contraction dynamics of the filament. 
For small times ( t  < O(1)) the slope of the lines is somewhat less than 2, indicating an 
almost constant acceleration of the end of the filament. We notice that for t = O( 1) 
the slope of the lines increases significantly, indicating an increase in the acceleration 
of the end of the filament. In fact, in this time interval we have 1 - L(t)/Lo - t3.75. 
For still large times, t = 0(10), the slope of the lines decreases to a value of almost 
unity indicating that the end of the filament contracts with a constant velocity. As 
indicated in $4, we were not able to continue the calculation until the equilibrium 
configuration was reached in the case with Oh = 0.1. Therefore, figure 8(b) does not 
show the decelerating stage of the contraction. 

In order to attempt to explain some of the above results it is instructive to investigate 
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the evolution of the filament for t << 1. At the moment when the end of the filament 
just starts to move, a spherical cap with unit radius must be accelerated. In the initial 
instant, the only driving force present is the surface tension force. Since for small 
times the radius of the spherical cap may be assumed constant, it follows that neither 
the mass of the cap, nor the driving force will change. Hence, a constant force applied 
to a constant mass will lead to a constant acceleration of the mass. This corresponds 
with the behaviour seen in figure 8 for t << 1. While the foregoing argument may be 
able to explain the constant acceleration of the filament just after it started moving, 
we should stress that the argument is not valid for most of the time range shown in 
figure 8. That for Oh = 1 the filament has an almost constant acceleration for most 
of the time interval shown, is due to a non-trivial balance between surface tension 
forces on one hand and inertia and viscous forces on the other hand. 

The increased rate of contraction when t = O(1) and Oh = 0.1 has an interesting 
physical origin: in figure 7 we note that after t = 0.5 the neck ahead of the bulbous 
end of the filament starts to form. This implies that the time interval in which the 
increased acceleration occurs corresponds with the onset of the formation of the 
neck. Evidently, the bulbous end is drawn towards the neck when the neck forms, 
after which the rate of contraction slows down to an almost constant value. This 
observation lends support to the work of Keller (1983) and Ting & Keller (1990) who 
showed that the end of a uniform, inviscid filament contracting steadily advances 
with a constant velocity. 

Results of calculations with smaller Ohnesorge numbers exhibit essentially the 
same behaviour as that observed for the case with Oh = 0.1 : the early stage of steady 
acceleration is followed by an increased acceleration due to the formation of the 
neck. However, the stage in which the filament contracts with a steady velocity is not 
attained owing to end-pinching for sufficiently small Ohnesorge numbers. 

6.  Conclusions 
In this paper we have studied the evolution of a free liquid filament which contracts 

under the action of surface tension forces. The Navier-Stokes equations in an axially 
symmetric geometry are solved numerically using a finite-element discretization proce- 
dure. Domain deformations are dealt with by means of a mixed Lagrangian-Eulerian 
approach. The capillary free surface is treated as Lagrangian so that nodes on the 
surface move with the convective velocity. Internal nodes are Eulerian-Lagrangian 
nodes. The position of these nodes is adjusted such that the movement of internal 
nodes reflects the topological change of the free surface. 

The contraction characteristics are found to be crucially dependent on the Ohne- 
sorge number Oh. For large Ohnesorge numbers (Oh 2 O(1)) the filament contracts 
uniformly without the occurrence of large velocity gradients inside the fluid domain. 
During the contraction a bulbous end is formed which grows slowly with time. The 
pressure in the fluid is mainly determined by the normal stress jump across the free 
surface which means that the point of minimum pressure coincides with the point 
of inflection of the free surface. End-pinching, the process of a drop breaking away 
from the end of the contracting filament, does not occur. The end of the contract- 
ing filament accelerates almost uniformly during most of the contracting stage. It is 
only when the ends of the filament approach the symmetry plane that the rate of 
contraction slows down. 

When the Ohnesorge number is lowered we typically find that the bulbous end 
becomes more localized and ahead of the bulbous end a neck develops. In addition it 
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is found that dynamic effects move the point of minimum pressure towards the neck. 
For Ohnesorge numbers in the range lo-* 6 Oh < lo-' a clear neck is visible but 
its radius reaches a steady value during the contraction. End-pinching therefore does 
not occur. For Ohnesorge numbers in this range the end of the filament accelerates 
uniformly during the unitial stage of the contraction. Subsequently, when the neck 
forms ahead of the bulbous end, the rate of contraction increases significantly. When 
the neck has formed the contraction reaches a stage in which the end of the filament 
moves with a constant velocity until the bulbous ends reach the symmetry plane. 

we find that the contracting 
filament is no longer stable: end-pinching occurs. The mechanisms which lead to 
end-pinching are as follows. When the radius of the neck decreases the stress stress 
jump across the free surface increases in the necking region. In addition it is found 
that the pressure minimum in the fluid has moved towards the neck. The low-pressure 
region in the neck together with the large stress jump across the free surface combine 
to render the filament unstable, thus leading to end-pinching. The critical Ohnesorge 
number, Oh*, that is, the Ohnesorge number below which end-pinching occurs, 
cannot be established with great precision due to the limitation of the numerical 
model. Numerically we find 5 x This value agrees well with 
experimental observations which put the critical Ohnesorge number in the range 
6.6 x 

Decreasing the Ohnesorge number to Oh = 5 x 

< Oh* < 

< Oh* < 7.4 x lop3. 

Two anonymous referees and Professor J. B. Keller have provided constructive 
comments which have improved clarity of the material presented in this paper. 
Extensive use was made of the finite-element package SEPRAN. 

Appendix A. Eigenfrequencies of a viscous drop 
The eigenfrequencies of a drop of liquid with an arbitrary viscosity were calculated 

by Reid (1960). It was shown that the eigenfrequencies are given by the roots of the 
following equation: 

[I + (1  + 1) 
404 2(1- 1) - 
414+1=- 4: 

in which 4: = R201,v/v, 402 = R201,0/v and 1 = 1,2,. ' .. In these equations v denotes the 
kinematic viscosity, R denotes the radius of the drop, qv  the eigenfrequency of the vis- 
cous drop, q o  the eigenfrequency of the inviscid drop and Q1+1/2 = J1+3/2(q)/J1+1/2(q) 

in which Jk(q) denotes Bessel functions of fractional order. We are interested in 
the roots of equation ( A l )  for small values of the viscosity, that is, large Q. Using 
asymptotic expressions for the Bessel functions (cf. Abramowitz & Stegun 1972) we 
find readily that IQl+1/21 = 0(1) so that after some manipulations we can approximate 
(A 1) by the equation 

in which A = 2(1- 1)(1 + 21)/R2 and B = 2( 1 - l2)AQ1+1p/( 1 + 21). We next search 
for roots of (A2) which have the form 
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FIGURE 9. Free-surface shapes of a contracting inviscid filament with Lo = 15. The free surfaces 
are shown at the times t = O.S(O.5)S.O. The radius in the neck vanished at t = 5.02. 

On substituting (A 3) into (A 2) and equating coefficients of like powers of v equal to 
zero we find 

Since A is real, 0;') is real. Thus, a:') denotes the leading-order approximation to the 
damping coefficient, which can also be obtained by alternative means (cf. Lamb 1945, 
@275, 355). The correction to the leading-order approximations of the frequency and 
the damping coefficient is provided by of). Using (A2), (A3) and the definition of 
qr we find ql = 2-i + l)(a:)/2~)'/~R + 0(v'I2).  We are interested in the frequency 
and damping coefficient of the fundamental mode with 1 = 2. Using Abramowitz & 
Stegun (1972) we find that Q&) -+ - cot x in the limit x + 03. This result, together 
with the expression we have derived for q2 yields 

Thus, substituting the known expressions for 0;') and of) and employing the time and 
length scales as given in $2, we find the following approximation to the dimensionless 
frequency (a) and the damping coefficient (6) of a viscous drop oscillating in the 
fundamental mode, 

In (A6 a denotes the dimensionless radius of the drop in the undisturbed state 

6 = 0.122. 
and a? 1 = ( 8 / ~ ~ ) ' / ~ .  When a = (5/2)'13 and Oh = 0.05, (A6) yields w = 1.775 and 

Appendix B. Inviscid filament 
In order to determine whether in the limit Oh 4 0 end-pinching occurs, we can 

use the fact that on the assumption of irrotational flow the equations for an inviscid 
fluid reduce to the Laplace equation for the velocity potential. This simplification has 
the benefit that an integral formulation exists for the Laplace equation. This implies 
that the problem for the velocity potential can be reduced to solving an integral 
equation prescribed only on the boundary of the domain of interest, which is of 
particular use in free-boundary problems. Employing the boundary-integral approach 
one is in particular more able to deal with large domain deformations on a local 
scale such as occur in a necking region. In this Appendix results obtained by means 
of a boundary-integral approach are presented for the case of a contracting inviscid 
filament. All details of this approach will be omitted since they can be found in 
Schulkes (1994a,b). 
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In figure 9 the domain of the inviscid liquid filament is plotted at the times indicated. 
Like in all calculations carried out in $4, it was assumed that at t = 0 the filament 
was at rest with the filament consisting of a cylindrical body with hemispherical ends. 
The initial length was taken to be LO = 15. We observe that the neck evolves slowly 
at first, but after t = 4 the radius of the neck decreases rapidly. End-pinching occurs 
after 5.02 time units. 
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